$\mathrm{C}_{\mathrm{a}} \mathrm{P}_{\text {tuing } m} \mathrm{~A}_{\text {ths }}$

West Somerset
 Calculation Policy Summer 2018

This policy has been designed to teach children to develop conceptual understanding through the progression of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

Background

This policy has been developed by CLP Maths Coordinators (Primary/Secondary).

Using the concrete-pictorial-abstract approach:

Children develop an understanding of a mathematical concept through the three steps (or representation) of concrete-pictorial-abstract approach. Reinforcement is achieved by going back and forth between these representations.

Concrete representations isper enactive stage - a pupil is first introduced to an idea or a skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representations icsithe iconic stage - a pupil has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation mathematical notation, for example: $12 \div 2=6$.

Part/Whole Model - Key Structures

Addition and Subtraction are connected. Add parts together to equal the whole, whole subtract part to name the missing part.

Guidance

This is document provides guidance and examples for key objectives for each year group but is not to be followed as a complete planning aid as not all objectives are exemplified.

Early Years

Developing Number Sense

Vocabulary

Part, whole, add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on. equal to, take, take away, less, minus, subtract, leaves, difference between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

Ordinality:

Ordinal numbers:

| Concrete: |
| :--- | :--- | :--- |
| Children physically line up ducks in a row and |
| verbally label them, e.g. 'first/second / third.' |\quad| Pictorial: |
| :--- |
| Children order slides with pictures of ducks, for |
| example, on the Interactive Whiteboard. |\quad| Abstract: |
| :--- |
| Children apply their understanding of ordinal |
| numbers, e.g. by using written $1^{\text {st }, ~ 2 ~} 2^{\text {nd }}$ and $3^{\text {rd }}$ |
| labels and other related verbal language when |
| ordering objects. |

Cardinality:

Concrete: Children use a range of structured and unstructured apparatus, plus natural resources, to create different number values.	Pictorial: Children recognise different number values that are presented in pictorial forms.	Abstract: Children are asked a range of questions that allow them to show an application of understanding related to cardinality, e.g. Can you find a collection of...[objects]...to represent six? Can you show me six fingers?

Subitising:

Concrete: Children replicate a range of physical representations, which they then verbally interpret without a need to count objects.	Pictorial: Children use picture prompts to practise their recognition of number representations.	Abstract: Children use finger paint to show various 1-6 representations.

Equality:

1 to 1 correspondence:

Concrete: Children count various physical objects by partitioning a group and finally recombining.	Pictorial: Children count the dots on the face of a pictorial dice.	Abstract: Children draw dots to match the number of holes that can be seen on a named Numicon shape.
Children write a number in each part of a muffin tin and then put the appropriate number of buttons in each section.	Children match number cards to pictures of the equal numbers of buttons.	Children cut out buttons equal to the number shown on a number card.

Conservation of number:

Concept of zero:

Concrete:

Children use a shuffle box with up to ten objects in. After the box has been shaken, pupils write out the corresponding number sentence, e.g. $2=$ $1+1$, depending on where the objects have landed. Query what happens if there is nothing on one side. Introduce to children the concept of zero, e.g. $2=2+0$.

Pictorial:
Children use pictorial representations to see that you can have an amount that's called 'zero.' Pupils are required to count the number of apples of a tree, and circle the trees which have no apples.

Abstract:
Children can be encouraged to represent written number sentences by creating visual shuffle boxes using finger paint, e.g. $5=0+5$

Pupils should be able to grasp the concept of zero to use within number sentences, e.g. $4=4+0$... and verbalise ...
"I know that four is the same as four add zero."

Counting on:

Concrete:
Children use physical objects to learn the skill.
For example, they count on from the larger value by using their fingers whilst pointing at each 'extra' dot on the second side of a domino.

In addition, pupils use counters on number tracks to rehearse the process of counting on.

Pictorial:

Children use a die to generate numbers and count on from pictorial representations of counters already positioned on a number track.

1	2	3	4	5	6	7	8	9	10

Abstract:
Children apply their understanding of this skill by
playing games such as 'snakes and ladders.'

Reception

Addition

Vocabulary

Part, whole, add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on.
Use of Numicon is another great way to help children develop mental representations of number.

These experiences and number representations will help children:

- Reliably count the number of objects in a set using the numbers one to twenty.

Year 1

Subtraction by counting back

When subtracting using Dienes children should be taught to regroup a ten rod for 10 ones and then subtract from those ones

Subtracting multiples of 10

Using the vocabulary of 1 ten, 2 tens etc alongside 10, 20, 30 Is very important here as pupils need to understand that it is a 10 not a 1 that is being taken away

Multiplication

Vocabulary

Part, whole, ones, groups, lots of, doubling, repeated addition, groups of, lots of, times, columns, rows, longer, bigger, higher etc and times as (big, long, wide ...etc)
Counting in multiples of 2, $\mathbf{5}$ and $\mathbf{1 0}$ from zero
Children should count the number of groups on their fingers as they are skip counting.
4 groups of $2=8$

When moving to pictorial/written calculations the vocabulary is important

This image represents two groups of 4 or 4 twice

$2 \times 4=8$

Solving multiplication problems using repeated addition

Division

Vocabulary

Part, whole, share, share equally, one each, two each..., group, groups of, lots of, array
Pupils should be taught to divide through working practically and the sharing should be shown below the whole to familiarize children with the concept of the whole.

The language of whole and part part should be used.
$8 \div 4=2$

There are 4 boxes of 2 cans.

Year 2

Addition

Vocabulary

Part, whole, + , add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? =, equals, sign, is the same as, tens, ones, partition
Near multiple of 10 , tens boundary, more than, one more, two more... ten more...
Using concrete objects and pictorial representations to add $\mathbf{3}$ single digit numbers.

Using concrete objects and pictorial representations to add a $\mathbf{2}$ digit number and ones and tens.

Using concrete objects and pictorial representations to add two 2-digit numbers

Calculations

15
$+34$

Leading to:

Using the bar to find missing digits.
It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.
Helen has 14 breadsticks. Her friend has 17. How many do they have altogether?

Subtraction

Vocabulary

Part, whole, Subtraction, subtract, take away, difference, difference between, minus
Tens, ones, partition
Near multiple of 10, tens boundary, Less than, one less, two less... ten less..
Using concrete objects and pictorial representations to subtract a 1-digit number from 2-digit number.

Using concrete objects and pictorial representations to subtract a 10s number from 2 digit number.

68
-30

Using concrete objects and pictorial representations to subtract a 2-digit number from $\mathbf{2}$ digit number.

68
-32

Greater Depth:

${ }_{8}^{6} 2$
-47

76	
23	$?$

subtraction

Use to check inverse calculations

Multiplication

Vocabulary
Part, whole, multiple, multiplication array, multiplication tables / facts, groups of, lots of, times, columns, rows
Skip counting in multiples of 2, 3, 5, 10 from 0

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to writea range of calculationse.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Division

Vocabulary

Part, whole, group in pairs, 3 s ... 10 s etc, equal groups of, divide, \div, divided by, divided into, remainder

Solve division problems in context using arrays

I can solve division as grouping.
Put 10 buns in groups of 2.
How many plates are there?

Greater Depth with remainders

$13 \div 4=3$ Remainder 1

Year 3

Addition

Vocabulary

Part, whole, hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y 1 and Y 2

Add two three-digit numbers.

Children need to use equipment first to support their understanding of place value.
Children to progress gradually to three digit + three digit starting without carrying and gradually moving towards carrying.

Use of place value counters to add HTO + TO, HTO +
HTO etc. When thereare 10 ones inthe 1 scolumn-we
exchange for 1 ten, when there are 10 tens in the 10 s column-we exchange for 1 hundred.

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

Bar Model to support understanding of problem solving:

A man sold 230 balloons at a carnival in the morning.
He sold another 86 balloons in the evening. How many balloons did he sell in all?

Subtraction

Vocabulary

Part, whole, hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2

Subtract up to 3 digits from 3 digits.

Very important for children to use dienes equipment along with a place value chart to support.

$263-121=142$

Only when secure with the method should exchanging be introduced.

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

315		$315-185=?$
185	$?$	$185+?=315$

$?$		$185+315=?$ 185

Multiplication

Vocabulary

Part, whole, multiple, partition, short multiplication and inverse
Children should be able to recall the $2,5,10,3,4$ and 8 times tables.

Multiply a two-digit number by a one digit.

Fommal witter method
$6 \times 23=$
23
$\times 6$
$\frac{138}{11}$

Using the bar to solve multiplication problems.

Whole unknown 4 children go to the cinema.	?			
They each pay £15. How much do they spend altogether?	15	15	15	15

Division

Vocabulary

Part, whole, See Y1 and Y2 and Inverse, remainder

Dividing using short division.

Remind children of correct place value, that 69 is equal to 60 and 9, but in short division, pose:

- How many 3's in 6? = 2, and record it above the 6 tens.
- How many 3's in 9? = 3, and record it above the 9 ones.

Once children demonstrate a full understanding of remainders, and also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (e.g. $42 \div 3$), and be taught to 'carry' the remainder onto the next digit.

Using the bar to aid the solving of division problems - grouping and sharing

$$
60 \div 4=15
$$

60			
15	15	15	15

'60 in four equal parts'
$28 \div 7=4$

'How many 7s in 28?'

Year 4

Addition

Vocabulary

Part, whole, add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.
Adding numbers with up to 4 digits.
Again this should start with the children using dienes to support them with lots of discussion about the value of each digit.

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.
This is not a form of getting the correct answer but helping to guide children to the correct operation.
Alison jogs 6,860 metres and Calvin jogs 5,470 metres. How far do they jog altogether?

Subtraction

Vocabulary

Part, whole, subtract, takeaway, less, minus, decrease, fewer, difference, how many less to make..? how much less? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many fewer? Equals sign, is the same as.
To subtract with numbers up to four digits including exchanging when children are secure.
Children need to use place value counters to support their learning.

6232

- 4814

1418

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

Multiplication

Vocabulary

Part, whole, Factor, product
Children to know all times tables to 12×12.
Children multiplying both two and three digits by a one digit number using place value counters.

$235 \times 6=1410$

Multiplying using the bar.
A computer costs 5 times as much as a television. The television costs $£ 429$.

Cost of the computer

How much does the computer cost?

Division

Vocabulary

Part, whole, see years 1-3, divide, divided by, divisible by, divided into, share between, groups of factor, factor pair, multiple, times as (big, long, wide ...etc), equals, remainder, quotient, divisor and inverse
Dividing up to three digit numbers by a one digit number using short division.
Only when the children are secure with dividing a two digit number should they move onto a 3 digit number.

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. Howmanygroups of 5 tens can you make with 11 ten
counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

With remainders

Dividing using the bar.

Desmond and Melissa cullect cards. They have 192 cards in all Melissa hasthree fimes as many cards as Desmond. How many cards does Desmond have?

192				
$D=?$	M	M	M	

Year 5

Addition

Vocabulary

Part, whole, tens of thousands boundary,
Also see previous years
Adding numbers with more than 4 digits including decimals
Using place value charts are key to this as well as place value counters to help with the decimals.

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.
This is not a form of getting the correct answer but helping to guide children to the correct operation.
MacDonald sold $£ 9957.68$ worth of hamburgers and $£ 1238.5$ worth of chicken nuggets. How much money did they take altogether?

Subtraction

Vocabulary

Part, whole, tens of thousands boundary,
Also see previous years
Subtract with at least four digit numbers including two decimal places.
Include money, measures and decimals ensuring that children do this practically before the abstract.
Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point.

Using the bar to find missing digits.
It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

$$
\begin{aligned}
& \text { A whole to Lapland costs } £ 5005 \text { for a family of four, } \\
& \text { the Smith's have only saved } £ 3787.75 \text {, how much } \\
& \text { money do they still need to find? } \\
&
\end{aligned}
$$

Multiplication

Vocabulary

Part, whole, cube numbers, prime numbers, square numbers, common factors, prime number, prime factors and composite numbers
Multiplying up to four digit numbers by two digits using long multiplication.
Children need to be taught to approximate first, e.g. for $\mathbf{7 2} \times 38$, they will use rounding: $\mathbf{7 2} \times 38$ is approximately $70 \times 40=$ 2800, and use the approximation to check the reasonableness of their answer.

When children start to multiply $3 \mathrm{~d} \times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract:
To get 744 children have solved 6×124.
To get 2480 they have solved 20×124.

Answer: 3224
Using the bar to support multiplication.

The cost to run a sports centre is $£ 4375$ a week, how much would it cost to run for 16 weeks?

Division

Vocabulary see year 4

Part, whole, common factors, prime number, prime factors, composite numbers, short division, square number, cube number, inverse, power of
Diving with up to four digit numbers by one digit including numbers where remainders are left.

Short division with remainders: Now give rise to remainder answers, solving context, where pupils consider express it, ie. as a fraction, a decimal, upon the context of the problem.

that pupils are introduced to examples that division needs to have a real life problem the meaning of the remainder and how to or as a rounded number or value, depending

Using the bar to support division problems.

Bar Model to support understanding of problem solving:
Frank has 4920 apples. He needs to put them into baskets of 40 . How many baskets does he need?

Year 6 (supporting transition into Year 7)

Division

Vocabulary

see years 4 and 5 Part, whole, long division
Divide at least 4 digits by both single-digit and 2-digit numbers (including decimal numbers and quantities)
Short division with remainders: Pupils should continue to use this method, but with numbers to at
 least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.

Long division this is for when dividing by two digit numbers.

Using the bar to help divide.
Paul and David hire a car together at a cost of
$£ 297.50$. Paul pays 6 times more than David.
How much does David pay?

